Improvement on Operator Axioms and Fundamental Operator Functions
نویسنده
چکیده
The reference [2] contructs the Operator axioms to deduce number systems. In this paper, we slightly improve on the syntax of the Operator axioms and construct a semantics of the Operator axioms. Then on the basis of the improved Operator axioms, we define two fundamental operator functions to study the analytic properties of the Operator axioms. Finally, we prove two theorems about the fundamental operator functions and pose some conjectures. Real operators can give new equations and inequalities so as to precisely describe the relation of mathematical objects or scientific objects.
منابع مشابه
L_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملOn a subclass of multivalent analytic functions associated with an extended fractional differintegral operator
Making use of an extended fractional differintegral operator ( introduced recently by Patel and Mishra), we introduce a new subclass of multivalent analytic functions and investigate certain interesting properties of this subclass.
متن کاملThe convexity of the integral operator on the class of the integral operator on the class B(mu,alpha)
In this paper, we study the convexity of the integral operator
متن کاملOn convolution properties for some classes of meromorphic functions associated with linear operator
In this paper, we defined two classes $S_{p}^{ast }(n,lambda ,A,B)$ and\ $ K_{p}(n,lambda ,A,B)$ of meromorphic $p-$valent functions associated with a new linear operator. We obtained convolution properties for functions in these classes.
متن کاملBi-concave Functions Defined by Al-Oboudi Differential Operator
The purpose of the present paper is to introduce a class $D_{Sigma ;delta }^{n}C_{0}(alpha )$ of bi-concave functions defined by Al-Oboudi differential operator. We find estimates on the Taylor-Maclaurin coefficients $leftvert a_{2}rightvert $ and $leftvert a_{3}rightvert$ for functions in this class. Several consequences of these results are also pointed out in the form of corollaries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015